
Boomerang: Exploiting the Semantic
Gap in Trusted Execution Environments

Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls,
Nick Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe,

Christopher Kruegel, and Giovanni Vigna

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SANDNO. 2017-XXXXP

Trusted Execution Environment (TEE)

● Hardware-isolated execution environments (e.g., ARM TrustZone)

○ Non-secure world
■ Untrusted OS and untrusted applications (UAs) (e.g., Android and apps)

○ Secure world
■ Higher privilege, can access everything
■ Trusted OS and trusted applications (TAs).

ARM TrustZone
NS Bit

● 0 - Secure or Trusted
● 1 - Non-secure or Non-trusted or Untrusted

Picture reused from arm.com

Untrusted OS ↔ Trusted OS
● Untrusted applications (UAs) request trusted applications (TAs) to perform

privileged tasks.

● TAs should verify the request and perform it only if the request is valid.
○ Example: Sign the contents of a memory region

■ TA should check if the requested memory region belongs to untrusted OS before
computing the signature of it.

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Trusted
Application (TA)

Untrusted OS
Trusted OS

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Trusted
Application (TA)

Untrusted OS
Trusted OS

?

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS

Driver Interface (ioctl)
Trusted OS

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS TE
E

In
te

rf
ac

eDriver Interface (ioctl)
Trusted OS

SMC

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS TE
E

In
te

rf
ac

eDriver Interface (ioctl)
Trusted OS

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS TE
E

In
te

rf
ac

eDriver Interface (ioctl)
Trusted OS

Communication with TA
● Requests to TA can contain pointers.

struct keymaster_sign_data_cmd {

uint32_t data_ptr; // Pointer to the data to sign

size_t dlen; // length of the data to sign

};

Structure of a sign request to KeyMaster TA.

Pointer translation and sanitization in untrusted OS
● Memory model could be different in untrusted and trusted OSes.

● One should use physical address for all pointer values between trusted and
untrusted OSes.

Pointer translation and sanitization in untrusted OS
● Sanitization: Untrusted OS should check that the UA has access to the pointer

provided in the request.

● Translation: Convert the virtual address to physical address.

● We call this functionality in untrusted OS as PTRSAN.

Example PTRSAN
int ptr_san(void *data, size_t len, phy_t *target_phy_addr)
{

if(!access_ok(VERIFY_WRITE, data, len)) {

return -EINVAL;

}

*target_phy_addr = get_physical_address(data);

return 0;

}

Sanitization

Translation

PTRSAN
Non-Secure World Secure World

Supervisor
Userspace

Untrusted Application (UA) Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

VA

Unknown

PA

Handling untrusted pointers in trusted OS
● Check if the physical address indicated by the pointer belongs to the

non-secure memory.
○ Protect trusted OS against untrusted OS

● Trusted OS (or TA) has no information about the UA which raised the request.

Handling untrusted pointers in trusted OS
● Check if the physical address indicated by the pointer belongs to the

non-secure memory.
○ Protect trusted OS against untrusted OS

● Trusted OS (or TA) has no information about the UA which raised the request.

Semantic Gap

Untrusted Application (UA)

Bypassing Sanitization
Non-Secure World Secure World

Supervisor
Userspace

Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

VA

Unknown

PA

Untrusted Application (UA)

Bypassing Sanitization
Non-Secure World Secure World

Supervisor
Userspace

Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

VA

Unknown

PA

P
T
R

P
T
R

Malicious

Untrusted Application (UA)

Boomerang flaw
Non-Secure World Secure World

Supervisor
Userspace

Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

VA

Unknown

PA

P
T
R

P
T
R

Malicious

Boomerang flaw
● Real world PTRSAN implementations are complex.

● Can we bypass the validation and make PTRSAN translate arbitrary
physical address?

YES!!
● We can bypass PTRSAN in all of the popular TEE implementations.

TEE Name Vendor Impact Bug Details

TrustedCore Huawei Arbitrary write CVE-2016-8762

QSEE Qualcomm Arbitrary write CVE-2016-5349

Trustonic As used by Samsung Arbitrary write PZ-962*

Sierra TEE Sierraware Arbitrary write No response from
vendor

OP-TEE Linaro Write to other
application’s memory Github issues 13, 14

*concurrently found by Google Project Zero (laginimaineb)

https://bugs.chromium.org/p/project-zero/issues/detail?id=962
https://github.com/linaro-swg/linux/issues/13/
https://github.com/linaro-swg/linux/issues/14/
https://bugs.chromium.org/p/project-zero/issues/list?q=label:Finder-laginimaineb

How to exploit Boomerang flaws?

Automatic detection of vulnerable TAs
● Goal: Find TAs which accepts pointers

● Static analysis of the TA binary:
○ Recover CFG of the TA
○ Paths from the entry point to potential sinks
○ Output the trace of Basic Block addresses

Results

TEE Name Number of TAs Vulnerable TAs

QSEE 3 3

TrustedCore 10 6

✓ Arbitrary kernel memory read on Qualcomm phones.

✓ Kernel code execution on Huawei P8 and P9.

✓ Demonstrated at GeekPwn.

✓ Geekpwn Grand Prize ($$$)

https://www.youtube.com/watch?v=XjbGTZrg9DA

Impact
● Compromising untrusted OS == Rooting your device.

● Hundreds of millions of devices on the market today.

● Fixes yet to be released.

● Your device may be vulnerable!!!

Expectation

+ =

Reality

+ =

How to prevent Boomerang attacks?

Just fix PTRSAN? NO!!
This requires to understand the semantics of current and future TAs.

● Structure of the TA request?

● Which fields within the structure are pointers?

Root Cause
● Semantic Gap: Inability of the TA (or TEE) to verify whether the requested UA

has access to the requested memory

● Should have a mechanism for the TA (or TEE) to verify or bridge the semantic
gap.

Existing Defenses
● Page Table Introspection

● Dedicated Shared Memory Region (DSMR)

Page Table Introspection
● Implemented in NVIDIA Trusted Little Kernel.

● Untrusted OS sends an id (e.g., pid) of the requested app (UA) along with
every request.

● TA or TEE verify the access of all untrusted pointers by referring to the
requested app page table.

Page Table Introspection
Pros:

● Easy to implement.

Cons:

● Trusted OS depends on Untrusted OS
● Increases attack surface
● Page table walking could be dangerous

Dedicated Shared Memory Region (DSMR)
● Implemented in Open Platform -Trusted Execution Environment (OP-TEE).
● Dedicated memory region for communication between trusted and untrusted

OS.
● UA should request access to the shared memory.
● TA or TEE verify that all untrusted pointers are within the dedicated memory

region.

Dedicated Shared Memory Region (DSMR)
Pros:

● Simple
● Independence from Untrusted OS

Cons:

● UA can interfere with other UAs via TAs (Partial Boomerang)
● Additional copying to/from shared memory
● Allocation of shared memory could become bottleneck in case of multithreaded

applications.
● Some applications (integrity monitoring) are hard to implemented using DSMR.

Cooperative Semantic Reconstruction (CSR)
● Novel defense proposed by us.

● Provides a channel for Trusted OS to query Untrusted OS for validation.

Cooperative Semantic Reconstruction (CSR)

Normal flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Implementation
● Open Platform-Trusted Execution Environment (OP-TEE)

● Easy to use
● Helpful community
● Has DSMR already implemented

● HiKey Development board (Lemaker Version)

Evaluation: CSR vs DSMR
● Microbenchmark: Time to validate single memory pointer/page.

Defense Name Overhead
Component Overhead (𝜇s) Total Overhead (𝜇s)

CSR

Untrusted OS
verification 21.909

26.891

Mapping in trusted
OS 4.982

DSMR

Shared memory
allocation 13.795

21.777Shared memory
release 7.982

Evaluation: CSR vs DSMR
● XTEST

● Default OP-TEE Test suite.

● 63 Tests covering sanity, functionality, benchmarking and compliance.

Evaluation: CSR vs DSMR

Tests Category
Overhead (CSR - DSMR) averaged over 30 runs

Avg Time(%) Avg Time (ms)

Basic Functionality -0.58% -7.168

Trusted-Untrusted
Communication 4.45% 0.510

Crypto Operations -1.72% -901.548

Secure File Storage 0.03% 0.694

Average over All
Categories -0.0344% -189.919 ms

CSR faster than DSMR DSMR faster than CSR

Evaluation: CSR vs DSMR
● DSMR is slow in practice:

● Synchronized access for shared memory allocation.
● Additional copying.

● CSR can be slow for simple requests.
● Setup of tracking structures.

Conclusion
✓ Boomerang: New class of bugs

✓ Automated attack vector detection

✓ Novel, practical, and efficient solution against boomerang: Cooperative semantic
reconstruction (CSR)

✓ Detection, exploits (?) , and defenses available at github

https://github.com/ucsb-seclab/boomerang

