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Trusted Execution Environment (TEE)

● Hardware-isolated execution environments (e.g., ARM TrustZone)

○ Non-secure world
■ Untrusted OS and untrusted applications (UAs) (e.g., Android and apps)

○ Secure world
■ Higher privilege, can access everything
■ Trusted OS and trusted applications (TAs). 



ARM TrustZone
NS Bit 

● 0 - Secure or Trusted
● 1 -  Non-secure or Non-trusted or Untrusted

Picture reused from arm.com 



Untrusted OS ↔ Trusted OS
● Untrusted applications (UAs) request trusted applications (TAs) to perform 

privileged tasks.

● TAs should verify the request and perform it only if the request is valid.
○ Example: Sign the contents of a memory region

■ TA should check if the requested memory region belongs to untrusted OS before 
computing the signature of it.
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Communication with TA
● Requests to TA can contain pointers.

struct keymaster_sign_data_cmd {

uint32_t  data_ptr; // Pointer to the data to sign

size_t   dlen; // length of the data to sign

};

Structure of a sign request to KeyMaster TA.



Pointer translation and sanitization in untrusted OS
● Memory model could be different in untrusted and trusted OSes.

● One should use physical address for all pointer values between trusted and 
untrusted OSes.



Pointer translation and sanitization in untrusted OS
● Sanitization: Untrusted OS should check that the UA has access to the pointer 

provided in the request.

● Translation: Convert the virtual address to physical address.

● We call this functionality in untrusted OS as PTRSAN.



Example PTRSAN
int ptr_san(void *data, size_t len, phy_t *target_phy_addr) 
{

if(!access_ok(VERIFY_WRITE, data, len)) {

return -EINVAL;

}

*target_phy_addr = get_physical_address(data);

return 0;

}

Sanitization

Translation
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Handling untrusted pointers in trusted OS
● Check if the physical address indicated by the pointer belongs to the 

non-secure memory.
○ Protect trusted OS against untrusted OS

● Trusted OS (or TA) has no information about the UA which raised the request.



Handling untrusted pointers in trusted OS
● Check if the physical address indicated by the pointer belongs to the 

non-secure memory.
○ Protect trusted OS against untrusted OS

● Trusted OS (or TA) has no information about the UA which raised the request.

Semantic Gap
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Boomerang flaw
● Real world PTRSAN implementations are complex.

● Can we bypass the validation and make PTRSAN translate arbitrary 
physical address?



YES!!
● We can bypass PTRSAN in all of the popular TEE implementations.

TEE Name Vendor Impact Bug Details

TrustedCore Huawei Arbitrary write CVE-2016-8762

QSEE Qualcomm Arbitrary write CVE-2016-5349

Trustonic As used by Samsung Arbitrary write PZ-962*

Sierra TEE Sierraware Arbitrary write No response from 
vendor

OP-TEE Linaro Write to other 
application’s memory Github issues 13, 14

*concurrently found by Google Project Zero (laginimaineb)

https://bugs.chromium.org/p/project-zero/issues/detail?id=962
https://github.com/linaro-swg/linux/issues/13/
https://github.com/linaro-swg/linux/issues/14/
https://bugs.chromium.org/p/project-zero/issues/list?q=label:Finder-laginimaineb


How to exploit Boomerang flaws?



Automatic detection of vulnerable TAs
● Goal: Find TAs which accepts pointers

● Static analysis of the TA binary:
○ Recover CFG of the TA
○ Paths from the entry point to potential sinks
○ Output the trace of Basic Block addresses



Results

TEE Name Number of TAs Vulnerable TAs

QSEE 3 3

TrustedCore 10 6

✓ Arbitrary kernel memory read on Qualcomm phones.

✓ Kernel code execution on Huawei P8 and P9. 

✓ Demonstrated at GeekPwn.

✓ Geekpwn Grand Prize ($$$)

https://www.youtube.com/watch?v=XjbGTZrg9DA


Impact
● Compromising untrusted OS == Rooting your device.

● Hundreds of millions of devices on the market today.

● Fixes yet to be released.

● Your device may be vulnerable!!!



Expectation
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Reality
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How to prevent Boomerang attacks?



Just fix PTRSAN?  NO!!
This requires to understand the semantics of current and future TAs.

● Structure of the TA request?

● Which fields within the structure are pointers?



Root Cause
● Semantic Gap: Inability of the TA (or TEE) to verify whether the requested UA 

has access to the requested memory

● Should have a mechanism for the TA (or TEE) to verify or bridge the semantic 
gap.



Existing Defenses
● Page Table Introspection

● Dedicated Shared Memory Region (DSMR)



Page Table Introspection
● Implemented in NVIDIA Trusted Little Kernel.

● Untrusted OS sends an id (e.g., pid) of the requested app (UA) along with 
every request.

● TA or TEE verify the access of all untrusted pointers by referring to the 
requested app page table.



Page Table Introspection
Pros:

● Easy to implement.

Cons:

● Trusted OS depends on Untrusted OS
● Increases attack surface
● Page table walking could be dangerous



Dedicated Shared Memory Region (DSMR)
● Implemented in Open Platform -Trusted Execution Environment (OP-TEE).
● Dedicated memory region for communication between trusted and untrusted 

OS.
● UA should request access to the shared memory.
● TA or TEE verify that all untrusted pointers are within the dedicated memory 

region.



Dedicated Shared Memory Region (DSMR)
Pros:

● Simple
● Independence from Untrusted OS

Cons:

● UA can interfere with other UAs via TAs (Partial Boomerang)
● Additional copying to/from shared memory
● Allocation of shared memory could become bottleneck in case of multithreaded 

applications.
● Some applications (integrity monitoring) are hard to implemented using DSMR.



Cooperative Semantic Reconstruction (CSR)
● Novel defense proposed by us.

● Provides a channel for Trusted OS to query Untrusted OS for validation.
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Implementation
● Open Platform-Trusted Execution Environment (OP-TEE)

● Easy to use
● Helpful community
● Has DSMR already implemented

● HiKey Development board (Lemaker Version)



Evaluation: CSR vs DSMR
● Microbenchmark: Time to validate single memory pointer/page.

Defense Name Overhead 
Component Overhead (𝜇s) Total Overhead (𝜇s)

CSR

Untrusted OS 
verification 21.909

26.891

Mapping in trusted 
OS 4.982

DSMR

Shared memory 
allocation 13.795

21.777Shared memory 
release 7.982



Evaluation: CSR vs DSMR
● XTEST

● Default OP-TEE Test suite.

● 63 Tests covering sanity, functionality, benchmarking and compliance.



Evaluation: CSR vs DSMR

Tests Category
Overhead  (CSR - DSMR)  averaged over 30 runs

Avg Time(%) Avg Time (ms)

Basic Functionality -0.58% -7.168

Trusted-Untrusted 
Communication 4.45% 0.510

Crypto Operations -1.72% -901.548

Secure File Storage 0.03% 0.694

Average over All 
Categories -0.0344% -189.919 ms

CSR faster than DSMR DSMR faster than CSR



Evaluation: CSR vs DSMR
● DSMR is slow in practice:

● Synchronized access for shared memory allocation.
● Additional copying.

● CSR can be slow for simple requests.
● Setup of tracking structures.



Conclusion
✓ Boomerang: New class of bugs

✓ Automated attack vector detection

✓ Novel, practical, and efficient solution against boomerang: Cooperative semantic 
reconstruction (CSR)

✓ Detection, exploits (?) , and defenses available at github

https://github.com/ucsb-seclab/boomerang

